Monday, 16 January 2012

Ultra short telomeres linked to osteoarthritis

Ultra short telomeres linked to osteoarthritis [ Back to EurekAlert! ] Public release date: 15-Jan-2012
[ | E-mail | Share Share ]

Contact: Dr. Hilary Glover
hilary.glover@biomedcentral.com
44-203-192-2370
BioMed Central

Telomeres, the very ends of chromosomes, become shorter as we age. When a cell divides it first duplicates its DNA and, because the DNA replication machinery fails to get all the way to the end, with each successive cell division a little bit more is missed. New research published in BioMed Central's open access journal Arthritis Research & Therapy shows that cells from osteoarthritic knees have abnormally shortened telomeres and that the percentage of cells with ultra short telomeres increases the closer to the damaged region within the joint.

While the shortening of telomeres is an unavoidable side effect of getting older, telomeres can also shorten as a result of sudden cell damage, including oxidative damage. Abnormally short telomeres have been found in some types of cancer, possibly because of the rapid cell division the cells are forced to undergo.

There has been some evidence from preliminary work done on cultured cells that the average telomere length is also reduced in osteoarthritis (OA). A team of researchers from Denmark used newly developed technology (Universal single telomere length assay) to look in detail at the telomeres of cells taken from the knees of people who had undergone joint replacement surgery. Their results showed that average telomere length was, as expected, shortened in OA, but that also 'ultra short' telomeres, thought to be due to oxidative stress, were even more strongly associated with OA.

Maria Harbo who led this research explained, "We see both a reduced mean telomere length and an increase in the number of cells with ultra short telomeres associated with increased severity of OA, proximity to the most damaged section of the joint, and with senescence. Senescence can be most simply explained as biological aging and senescent cartilage within joints is unable to repair itself properly."

She continued, "The telomere story shows us that there are, in theory, two processes going on in OA. Age-related shortening of telomeres, which leads to the inability of cells to continue dividing and so to cell senescence, and ultra short telomeres, probably caused by compression stress during use, which lead to senescence and failure of the joint to repair itself. We believe the second situation to be the most important in OA. The damaged cartilage could add to the mechanical stress within the joint and so cause a feedback cycle driving the progression of the disease."

###

Notes to Editors

1. The distribution pattern of critically short telomeres in human osteoarthritic knees
Maria Harbo, Laila Bendix, Anne-Christine Bay-Jensen, Jesper Graakjaer, Kent Se, Thomas L Andersen, Per Kjaersgaard-Andersen, Steen Koelvraa and Jean-Marie Delaisse
Arthritis Research & Therapy (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Arthritis Research & Therapy is an international, peer-reviewed online journal, publishing original research, reviews, commentaries and reports. The major focus of the journal is on cellular and molecular mechanisms of arthritis, musculoskeletal conditions and systemic autoimmune rheumatic diseases and translation of this knowledge into advances in clinical care. Original basic, translational laboratory and clinical research is considered for publication along with results of therapeutic trials.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Ultra short telomeres linked to osteoarthritis [ Back to EurekAlert! ] Public release date: 15-Jan-2012
[ | E-mail | Share Share ]

Contact: Dr. Hilary Glover
hilary.glover@biomedcentral.com
44-203-192-2370
BioMed Central

Telomeres, the very ends of chromosomes, become shorter as we age. When a cell divides it first duplicates its DNA and, because the DNA replication machinery fails to get all the way to the end, with each successive cell division a little bit more is missed. New research published in BioMed Central's open access journal Arthritis Research & Therapy shows that cells from osteoarthritic knees have abnormally shortened telomeres and that the percentage of cells with ultra short telomeres increases the closer to the damaged region within the joint.

While the shortening of telomeres is an unavoidable side effect of getting older, telomeres can also shorten as a result of sudden cell damage, including oxidative damage. Abnormally short telomeres have been found in some types of cancer, possibly because of the rapid cell division the cells are forced to undergo.

There has been some evidence from preliminary work done on cultured cells that the average telomere length is also reduced in osteoarthritis (OA). A team of researchers from Denmark used newly developed technology (Universal single telomere length assay) to look in detail at the telomeres of cells taken from the knees of people who had undergone joint replacement surgery. Their results showed that average telomere length was, as expected, shortened in OA, but that also 'ultra short' telomeres, thought to be due to oxidative stress, were even more strongly associated with OA.

Maria Harbo who led this research explained, "We see both a reduced mean telomere length and an increase in the number of cells with ultra short telomeres associated with increased severity of OA, proximity to the most damaged section of the joint, and with senescence. Senescence can be most simply explained as biological aging and senescent cartilage within joints is unable to repair itself properly."

She continued, "The telomere story shows us that there are, in theory, two processes going on in OA. Age-related shortening of telomeres, which leads to the inability of cells to continue dividing and so to cell senescence, and ultra short telomeres, probably caused by compression stress during use, which lead to senescence and failure of the joint to repair itself. We believe the second situation to be the most important in OA. The damaged cartilage could add to the mechanical stress within the joint and so cause a feedback cycle driving the progression of the disease."

###

Notes to Editors

1. The distribution pattern of critically short telomeres in human osteoarthritic knees
Maria Harbo, Laila Bendix, Anne-Christine Bay-Jensen, Jesper Graakjaer, Kent Se, Thomas L Andersen, Per Kjaersgaard-Andersen, Steen Koelvraa and Jean-Marie Delaisse
Arthritis Research & Therapy (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Arthritis Research & Therapy is an international, peer-reviewed online journal, publishing original research, reviews, commentaries and reports. The major focus of the journal is on cellular and molecular mechanisms of arthritis, musculoskeletal conditions and systemic autoimmune rheumatic diseases and translation of this knowledge into advances in clinical care. Original basic, translational laboratory and clinical research is considered for publication along with results of therapeutic trials.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2012-01/bc-ust011312.php

red tails olivier martinez peoples choice awards 2012 ford recalls mark sanchez narcolepsy narcolepsy

No comments:

Post a Comment